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We define and discuss the properties of manifolds of polynomials J.(t, x) and R,(t, n), 
called Rys polynomials, which are orthonormal with respect to the weighting factor 
exp(--xt*) on a finite interval of t. Numerical quadrature based on Rys polynomials 
provides an alternative approach to the computation of integrals commonly encountered 
in molecular quantum mechanics. This gives rise to a curve fitting problem for the 
roots and quadrature weights as a function of the x parameter. We have used Chebyshev 
approximation for small x and an asymptotic expansion for large x. A modified 
Christoffel-Darboux equation applicable to Rys polynomials is derived and used to 
obtain alternative formulas for Rys quadrature weight factors. 

I. INTR~DUC~~N 

The definite integral 

in = Jo1 tan exp(-xt2) dt, n = 0, 1,2... (1) 

is commonly encountered in molecular quantum mechanical calculations using 
Gaussian basis functions [l]. A linear combination of F,Jx) all with the same x 
can be written as a single integral 

I,(x) = k c,F,(x) = /‘fn(t) exp(-xt2) dt, 
m=0 0 

where f%(t) is an even polynomial of order 2n with coefficients c, . Our purpose 
in this paper is to define the system of orthogonal polynomials that leads to an 
exact quadrature formula for I,(x), to record some properties of these polynomials, 
and to discuss the efficient computation of polynomial roots and associated 
quadrature weight factors. 

F,(x) can be re-expressed in terms of the error function or the incomplete gamma 
function, but for reasonably small values of the argument it is readily evaluated by 
a nonalternating power series expansion in x as in Shavitt [l, Eqs. (25b(30)], or 
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by obtaining a polynomial approximation to F,Jx) valid over a specified range of x 
values. Given fJt) explicitly, i.e., given values of c, , a computationally stable 
procedure for the evaluation of I,(x) is to first obtain Fn(x), then generate the 
other F, by downward recursion using 

(2m - l)F,-,(x) = 2xF,,(x) + exp(-x), (3) 

followed by the summation in (2). This is, essentially, the method followed in all 
standard Gaussian integral programs [2]. The motivation behind the present 
investigation is to bypass entirely the computation of c,, , which in typical quantum 
chemical applications is the really difficult part of the computation in terms of 
both programming effort and machine execution time. This strategy requires a 
complete reorganization of existing quantum chemical programs. Instead of 
manipulating algebraic expressions for c, , we work with numerical values of the 
integrand in (2) evaluated at the zeros, t, , of a Rys polynomial. In place of the usual 
subroutine for computing F,(x), this method requires one for the evaluation of 
t,(x) and its associated weight factor. We defer to a later paper a discussion of the 
relative merits of the two approaches. 

Here we attempt to establish the underlying mathematical relationships and 
computational methods. Section II defines the Rys polynomials, useful properties 
of which are given in Section III. The bulk of the paper, Section IV, is concerned 
with practical evaluation of roots and weights. This is done numerically in three 
steps. First, these functions of x are computed to high accuracy at a number of 
points. Then we attempt to fit these results by low-order polynomial approxi- 
mations valid over finite intervals of x, and by asymptotic expansions for large x. 
The resulting values of the parameters in the various fitting functions are then 
stored once and for all as constants in a set of efficient subroutines. Finally, 
Section V records a number of analytical relationships between roots and weights 
and how they vary with respect to the x parameter. 

II. RYS POLYNOMIALS 

Let p,(t) denote a polynomial of order n. A system of polynomials is said to be 
orthogonal on the interval (a, b) with respect to the weight function w(t), if [3] 

In particular, they are orthonormal if h, = 1. Familiar examples are the Legendre 
polynomials P,(t), for which a = -1, b = 1, w = 1, h, = (n + 1/2)-l, and 



146 KING AND DUPUIS 

Hermite polynomials H,(t), for which a = - cc, b = ‘;o, 1~ = exp(--t2), and 
h n = +l22nnl . . 

Consider a manifold of polynomials, J,(t, x) orthonormal on the interval 
- I < c < 1 or, alternatively, R,(t, x) orthonormal on (0, l), both with respect to 
the weight function 

w(t, x) = exp(-xt’), (5) 

where x is a real parameter. The fact that w is everywhere positive is sufficient to 
assure existence and uniqueness [3]. When the value of x is obvious from context, 
we simplify the notation to Jn(t) or J, . The R, are chosen to be even polynomials 
of order 2n. They are simply proportional to the even members of J, . 

R,(t, x) = 21/2Jz,(t, x). (6) 

In recognition of the contributions of a colleague we call these Rys polynomials, 
or to be specific, J-type or R-type Rys polynomials. 

In the limit x + 0, J, becomes a Legendre polynomial. 

J,(t, 0) = (n + 1/2)l/” p,(t). (7) 

In the limit of large x, J, becomes a scaled Hermite polynomial in the sense dis- 
cussed below. Replace p,(t) by Jn(t, x) in (4) and make the substitutions b = x1j2 
and u = bt. It follows that 

b-l 1” J&/b, x) J&/b, x) exp(--u2) du = A,, . 
-b 

(8) 

As b increases, (8) approaches the defining equation for normalized Hermite 
polynomials. Further analysis of (8) leads to the conclusion that the following 
function, which appears in the integrand of (8), converges uniformly to a Hermite 
function. 

!i+i [x-~I~J,(x-~I~u, x) exp(--u2/2)] = w-1/4(2nn!)-1/2 H,(u) exp(-S/2). (9) 

In particular, the zeros of the function on the left approach those of the Hermite 
polynomial as x increases. Later we make use of this result in computing the roots 
of R,(t, x). 

R, is an even polynomial in r 

R,(t, x) = i C,,(x) P’. 
b-0 
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For any fixed x value R, is orthogonal to all other R, and so is orthogonal to 
tzm for m < n. Substitution of (10) into the orthogonality relation gives 

In matrix notation this becomes 

C+FC = I, (12) 

where the elements of C below the diagonal are zero by definition and the elements 
of F are 

(hk = F,+,-,(x)- (13) 

Solving for the coefficients of the lowest two R-type polynomials gives 

R, = $pJ2 (14) 
and 

R, = (FOP - Fl)[Fo(F& - F12)]-‘/2. (15) 

These are special cases of SzegiS [3, Eq. (2.2.6)] which gives R,(t) as the determinant 

~0. F,,-, 1 
R, = h, 2 2 +** F,, t2 

. . . . . . . . . . . ...’ 

Fn I;,-,-1 -** F2,,dl t2” 

(16aj 

with normalization factor 

A,, = (I F” 1 / Fn-l 1)-112, Wb) 

where I F” 1 is the determinant of the finite, square F matrix of order n + 1. 
Figure 1 shows Rs for three different x values. Note the characteristic shift of 

the three nodes toward smaller t values as x increases. This shift is predicted in 
the treatise by Szego [3, Theorem 6.12.21. Shown by a broken line is the scaled 
Hermite polynomial which, according to (6) and (9), approximates R,(t, 10). The 
corresponding Hermite approximations are seriously in error for the lower x 
values, and are not shown. 

Finally, we point out that Rys polynomials, like all orthogonal polynomials, 
multiply accord to 

RiRj = C bijkRk 9 (17) 
k 
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.o 

FIG. I. Rys polynomial R,(r, x). The broken curve is the scaled Hermite polynomial propor- 
tional to &(1014). 

where bijk is invariant with respect to permutation of its indices 

bijk = S1 RiRjRkIV dt, 
0 

and biik is nonzero only if it its indices satisfy the “triangle inequality,” i.e., if 
no index is greater than the sum of the other two. Because RiRj is obviously a 
polynomial of order i + jin the variable t2, it follows that bijk # 0 when k = i + j. 

III. SUMMATION ORTHOC~NALITY 

The relationship between orthogonal polynomials and quadratures is a classical 
area of analysis [3-4]. We recapitulate the portion that pertains to the evaluation 
of the integral in (2). The central theorem is that Rys polynomials are orthogonal 
under summation, 

il &(ta 3 X> Rj(tct 3 X> WJIX) = sij 7 (19) 

where 211 > i + j, ta(x) is a positive root of R, , and the W, are appropriate quadra- 
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ture factors. The fact that w > 0 assures that W, > 0. Another way to view these 
properties is to recognize that for any given II and x the quantity 

can be regarded as an element of an n by n real unitary matrix U(x). This leads to 
a number of useful relationships. For example, from the diagonal elements of 
U+U one obtains a Christoffel formula for the quadrature factors. 

W,-’ = z- R&J”. 
i=O 

(21) 

Proof of the assertions above is not difficult and can be found (paraphrased) 
in texts on orthogonal polynomials. [3-51. Readers familiar with (27) given below 
can regard (19) as a quadrature formula for Ri(t) R,(t). Perhaps it is helpful to 
others to point out that if (19) is shown to be true in the special case i = 0, then 
the general case follows immediately from (17). The special case reduces to 

c R&J We = 0, (22) 

when 0 <j < 2n. One can construct a nonnull vector W with elements W, to 
satisfy (22) for 0 <j < y1 because there always exists an n-dimensional vector 
orthogonal to n - I specified vectors. By induction one then shows that (22) is 
satisfied for 0 < j < 2n by substitution of R,(t,) &,(f,) into (17). The W, can 
be scaled according to 

c Wci = Fo , 
(I 

(23) 

which satisfies (19) when i = j = 0. 
Finally, we wish to record some useful corollaries of (19). Iffn(f) is an even poly- 

nomial of order 2m < 4n there exist coefficients ai such that 

fm(t) = t a,(x) Ri(t, x> 
i=O 

ai = 
s 

‘j&(t) R,(t) w(t) dt, 
0 

(24) 

(25) 

ai = i Mm) R&J K 3 (26) 
a=1 
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where r, is a root of R, . In particular, when i = 0 Eqs. (25)-(26) give the n-point 
Rys formula which is exact for& 

(27) 

IV. RYS ROOTS AND WEIGHTS 

Because of the functional form of fn(f) commonly encountered in molecular 
quantum mechanics, we prefer to evaluate directly the quantity U, which is related 
to the root of an R-type Rys polynomial according to 

24, = t,“/(l - t,“). 

Note that there is negligible round off error in obtaining t, from a given U, even 
for t. close to unity. Practical applications require that U=(X) and W,(x) be computed 
accurately and efficiently for any given n and x. We have computed many u=(x) 

FIG. 2. Quadrature weight factors for five-point formula based on the roots of R,(t, x). Note 
that W, varies by five powers of 10 over this x interval. 
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X 

FIG. 3. Zeroes of &(r, x). 

TABLE I 

Rys Roots and Weights for n = 5 

0.0 1 0.14887 43389 81631 21088 0.29552 42247 14752 87017(O) 
0.0 2 0.43339 53941 29247 19080 0.26926 67193 09996 35509(O) 
0.0 3 0.67940 95682 99024 40623 0.21908 63625 15982 04400(O) 
0.0 4 0.86506 33666 88984 51073 0.14945 13491 50580 593 15(O) 
0.0 5 0.97390 65285 17171 72008 0.66671 34430 86881 37594(l) 

5.0 1 0.12061 64790 67479 80274 0.22404 70675 36327 28532(O) 
5.0 2 0.35999 36089 78937 69402 0.12394 61261 90236 70786(O) 
5.0 3 0.59183 18425 24405 76114 0.38986 36709 17377 18353(l) 
5.0 4 0.80234 18319 01655 82444 0.76362 12053 30385 45742(2) 
5.0 5 0.95672 72697 52466 32751 0.10965 36738 90797 59497(2) 

10.0 1 0.10123 93950 75509 96865 0.18293 17078 96803 42357(O) 
10.0 2 0.30488 75738 73516 11244 0.80914 97211 11935 30740(l) 
10.0 3 0.51182 43809 11261 54433 0.15223 89283 14807 32218(l) 
10.0 4 0.72225 74026 79194 15721 0.11413 65256 49064 74907(2) 
10.0 5 0.92103 91128 95102 92651 0.35452 41067 44066 12318(4) 

a Number in parenthesis is negative power of 10. 
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and we(x) functions and have tried to represent them using Chebyshev expansion 
and other curve fitting techniques. We start with a FORTRAN program, 
DUBROOT, which was not written with efficiency in mind, but which is general 
and achieves an accuracy of about 25 significant figures when run in double 
precision on a CDC 6400. 

For a specified n and X, DUBROOT evaluates the F matrix using Shavitt 
[l, Eqs. (25)-(30)] for Fzn followed by downward recursion using (3). Then (12) 
is solved by Schmidt orthogonalization. The r, are obtained by root search, and 
the W, from (21). Results for n = 5 are displayed in Figs. 2 and 3 and a few 
accurate values are reported in Table 1. Note that roots are ordered so that 
t ol+1 > t, > 0. 

Large X Approximation 

Equations (6) and (9) imply that, as x becomes very large, the roots of J2,, and 
R n decrease as -+I2 i e 3 .* 

!i+i [~l/~t,(x)] = ran , (29) 

where r,, is a positive root of H2n . Similarly 

pi [x1i2 W,(x)] = w,, ) (30) 

where w,, is the corresponding weight factor for the 2n-point Gauss-Hermite 
quadrature formula. For sufficiently large x, t, M r,,x-li2. To avoid a spurious 
singularity in u, this approximation should not be used unless x is at least greater 
than rf,, . For example, this minimum x value is 2.7, 11.8, and 29.0 for 01 = n = 2, 
5, and 10 respectively. We show later that x has to be roughly three times greater 
than rz, before a “large x expansion” becomes very useful. 

As a further guide to the behavior of these functions at large x consider the case 
n = 1. Then 

f, = w&?‘2, (31) 

W, = -F, , (32) 
and 

~a = WE, - F;). (33) 

Use the asymptotic expansion for F;, [I] 

and 

F,,(x) = 1/2(~/x)l/~ - e-“[(2x)-l - (2~)-~ + 3(2~)-~ ***I, (34) 

F,(x) = (~x)-~(QT/x)~/* - e-“[(2x)-l + (2~)~~ - (2~)-~ + . ..I. (35) 
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If one drops the exponential terms in (34~(35), he recovers the limiting expressions 
(29)-(30). This is a general result, for all n, so let 

and 
W, = x-~/~w,, + e-5Qw, (36) 

U, = r&/(x - r&) + eezQu . (37) 

In the case n = 1 the Q-type correction factors are 

Qw = -(2x)-l + (2~)-~ - 3(2x)-” + ..a, (38) 

and 

Qu = -(~/.rr)l/~[x-l + x-~ + ~(ZX)-~ + -.-I + O(eP). (39) 

The analysis for higher n is difficult, but it shows that in the limit x --f co the leading 
term in Q is xs, where s is an integer or half integer that increases with n. This 
suggests plotting log Q versus log x. Figure 4 shows some results for n = 3 
obtained using accurate numerical values of U, and W, . The slopes of the lines 

IO’ ’ I I 
15 20 30 

X 
40 0 

FIG. 4. Q-type correction factors for use in Eqs. (36)-(37). In the case n = 3, all Qu are 
negative. Q. is positive except when OL = I. 

581/21/z-3 
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are slowly varying over the important interval of x and generally are not close 
to integer or half integer values. We tried fitting S(X) by a polynomial, but found 
that, with usually one extra term, we could do as well fitting Q by a sum of integer 
powers of x. We are interested in Q(x) only for x values such that QeF is small but 
not negligible compared with the V, or u, function being approximated. Table II 
gives the value of x that satisfies 

(40) 

for four values of yw . If, for example, one requires WI to 15 significant figures 
for n = 5 then Table II tells us that Qu, is needed to only five significant figures when 

TABLE II 

Value of x Corresponding to a Specified Value of yw 

II cl 10-l 10-S 10-l” 10-15 

1 1 1.4 9.8 20.9 32.2 

2 1 2.9 15.8 28.8 41.2 

2 2 6.4 18.4 31.2 43.6 

3 1 4.5 20.4 34.4 41.4 

3 3 11.1 24.2 31.8 50.1 

4 1 6.2 24.6 39.6 53.2 

4 4 15.4 29.4 43.6 51.0 

5 1 1.8 29.0 44.6 58.8 

5 5 19.6 34.4 49.2 63.0 

6 1 9.5 33.2 49.6 64.0 

6 6 23.8 39.2 54.6 68.6 

7 1 11.1 31.4 54.4 69.4 

1 7 28.2 44.1 59.9 14.4 

8 1 12.8 41.5 59.2 14.5 

8 8 32.3 48.8 65.1 19.9 

9 1 14.4 45.6 63.8 79.5 

9 9 36.5 53.5 10.1 85.2 

10 1 16.0 49.6 68.5 84.5 

10 10 40.6 58.1 15.1 90.6 
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TABLE III 

Value of x Corresponding to a Specified Value of yu 

Y. = u,’ e-= I Qu I 

n a 10-l 10-S 10-10 10-15 

1 1 3.3 13.0 24.8 36.5 

2 1 5.2 17.4 30.4 42.8 

2 2 6.5 17.8 30.6 43.0 

3 1 7.2 21.8 35.8 48.8 

3 3 10.0 22.6 36.2 49.0 

4 1 9.3 26.2 40.8 54.5 

4 4 13.7 21.2 41.4 54.8 

5 1 11.4 30.4 45.8 59.8 

5 5 17.2 31.6 46.6 60.4 

6 1 13.5 34.6 50.8 65.2 

6 6 21.0 36.2 51.6 65.8 

7 1 15.7 38.8 55.6 70.3 

7 7 24.8 40.7 56.7 71.2 

8 1 11.8 43.0 60.4 75.6 

8 8 28.6 45.2 61.6 16.4 

9 1 19.9 47.1 65.0 80.6 

9 9 32.4 49.5 66.4 81.6 

10 1 22.1 51.2 69.7 85.6 

10 10 36.2 53.9 71.2 86.6 

x > 44.6; and when x > 58.8 the Q factor is not needed at all. For each n only 
the maximum and minimum (Y values are included in Table II; the intermediate 
x, values are bracketed by those given. Similarly, Table III gives this information 
for U, . Note that for a given y and a given n > 2 the values of x, in Table III 
are bracketed by the corresponding x1 and x, in Table II. In other words, these 
tables indicate that of all the u, and W, for a given IZ, the approach to the “large x 
limit” is most rapid for WI and slowest for W, . 

We fit each W, and U, individually using (36) or (37) and 

Q(x) s Q = C &(x/x,,,)~, 

where k takes on all integer values from krni, to km,. Note that computer time 
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for the evaluation of (41) would not be reduced significantly by eliminating some 
intermediate k values. The optimal range for k depends upon: the interval of x 
for which the approximation is to be used, the desired accuracy, the value of n 
and, to a lesser extent, upon a. The best fit usually contains some positive and some 
negative powers of x. We want to minimize the maximum percent error in the 
object function, G = W(x) or G = u(x), over the interval xmrn to xmsx . This 
means that we can tolerate a much larger error in Q near the upper end of the 
interval than near Xmin. Our procedure has been to generate a list of points 
Xmin < X1 ,X2 ,..., xN < Xmax with the density of points being greatest at the lower 
end of the interval. Typically, N = 100. With a little experience we can assure that 
there are several points between each pair of nodes in the error function G - G. 
The coefficients Ak are varied by a Newton-Raphson method to minimize 

~1, = 1 [(Gj - Gj)/Gj]““, 

where Gj = G(xJ is the approximation using (41) and either (36) or (37). When 
p = 00 we have truly minimized the maximum error. We find no important 
changes when we go beyond p = 3, so we first obtain an initial guess by solving 

TABLE IV 

Accurate Expansions of Q, Using Equation (41) 

n a. g 

2 1 44 

2 2 44 

3 1 14 

3 2 U 

3 3 44 

3 1-3 44 

4 14 44 

4 l-4 u 

4 l-4 w 

4 14 w 

4 14 w 

5 l-5 Id 

5 l-5 44 

5 l-5 W 

5 l-5 W 

Xmin Xmax k Uli” k max 

15.0 45.0 -2 4 

15.0 45.0 -2 3 

15.0 20.0 -3 6 

15.0 20.0 -3 5 

15.0 20.0 -2 5 

20.0 50.0 -1 4 

20.0 50.0 -3 5 

35.0 54.0 4 6 

20.0 25.0 -1 7 

25.0 35.0 0 6 

35.0 54.0 4 6 

25.0 40.0 0 8 

40.0 59.0 3 6 

25.0 40.0 0 9 

40.0 59.0 6 8 
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TABLE V 

Dependence of Accuracy on Choice of powers of x in Eq. (41) for the 
Expansion of QU in the Case OL = 3, n = 4, .xmin = 20, xmax = 50” 

No. terms k min km, 

6 2 7 

7 -1 5 

7 0 6 

7 1 7 

8 -2 5 

8 -1 6 

8 0 7 

8 1 8 

9 -4 4 

9 -3 5 

9 -2 6 

9 -1 7 

Accuracy 

1.6 x lo-” 

3.8 x lo-r2 

2.7 x lo-‘* 

5.6 x lo-‘* 

7.7 x 10-13 

3.1 x 10-13 

2.7 x lo-l5 

1.0 x IO-‘” 

8.7 x lo-r3 

1.1 x lo-” 

1.1 x IO-13 

1.4 x 10-13 

LI Accuracy is defined to be the maximum relative error in U&X) over 
the specified x interval. 

TABLE VI 

Coefficients Ak , for Three of the QU Expansions Listed in Table V 

k 7 terms 8 terms 9 terms 

-3 -3 60330.8009 

-2 26 66745.0661 

-1 -86 26611.4368 

0 89608.0562 1 68624.1120 160 47760.7410 

1 -5 02825.5741 -9 82641.5417 - 190 18848.3430 

2 11 38724.1481 23 83919.6630 150 10447.9190 

3 - 13 89982.2603 -31 80032.9514 -80 17947.7993 

4 10 43029.9687 25 82378.7123 29 46420.1272 

5 -4 78047.3780 - 12 69829.7610 -7 61331.5377 

6 - 14203.0246 2 11324.2759 

7 - 27438.5727 
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the weighted least squares problem (p = I), and then refine the resulting A 
vector by minimizing L’~. This procedure has been carried out hundreds of times 
for various n, a, Xmin , Xmu, kmin , and km,, . (Each case takes several seconds 
on the CDC 6400.) Table IV reports the range of k and x values for n < 6. For all 
expansions reported in Table IV the approximation is accurate throughout the 
x interval to at least one part in 10 l3 Reducing the expansion length by one term . 
results, typically, in the loss of one significant figure in the accuracy of the approxi- 
mation, but some experimentation is required in order to know which term to drop. 
For example, see Table V. Note that the best eight-term fit is a polynomial of 
order seven, but the best nine-term fit is a fifth-order polynomial with three terms 
in inverse powers of ,y. Coefficients for some of these examples are given in Table VI. 

Small x Approximation 

The x interval from zero up to where (36) or (37) becomes useful is broken up 
into several smaller ones. Within each we obtain polynomial approximations for 
W,(x) and U=(X). It is helpful to have exact Taylor series coefficients for comparison, 
and a few are given below: 

n=l 

W,(x) = 1 - x/3 + x2/10 - x3/42 + a..) (43) 

ul(x) = l/2 - .X/S + 8x2/175 - 129x3/28000 + a.., (44 

n = 2 

W,(x) = 2-l(1 - r/18) - 6-l(l + 13r/270) x + 20-‘(1 + 503r/5346) x2 *a., (45) 

u&(x) = 4-l(6 + r) - 18-l(6 + r) x + 693-‘(20 + 139r/45) x2 - **a. (46) 

Here r is given by r2 = 30 where a! = 1 or 2 corresponds to the negative or positive 
root respectively. It is well known that a finite Taylor series expansion is an 
excellent approximation to the object function in the immediate vicinity of a given 
point, but Chebyshev polynomial expansion tends to minimize the maximum 
error over a specified interval [6, 71. 

Let T,(y) be the Chebyshev polynomial of order n on the interval a < x < b 

T,(y) = coW9, (47) 

where y has the standard range - 1 < y < 1, 

y = cos 8 = 2(x - x,,)/(b - a) (48) 

and x0 is the center of the interval 

x,, = (a + b)/2. (49) 
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We evaluate the object function G(x) at the roots of T,(y), usually n = 32 or 48. 
Using standard methods based on the orthogonal&y of Chebyshev polynomials 
under summation [6,7] the object function is approximated by a linear combination 
of Ti( y) which fits G at each of the n points. 

n-1 

G = 1 BjTj. (50) 
i=O 

After the first few terms, successive Bj coefficients typically fall off by a factor of 
ten or more as shown in Table VII. The series (50) is truncated at the desired 

TABLE VII 

Chebyshev Polynomial Expansion of u,(x) in the Vicinity of x = 12.5 in the Case n = 5, 01 = 3” 

j 
- 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

II 

12 

13 

14 

15 

16 

a = 10.0 a = 11.25 a = 10.0 n = 11.25 
6 = 15.0 6 = 13.75 6 = 15.0 6 = 13.75 

4 4 g,(m = 11) gj(m = 8) 

2.98(01)” 

-5.38(02) 

3.43(03) 

- 1.72(04) 

7.96(06) 

- 1.39(07) 

- 1.02(08) 

-4.52(10) 

-6.77(12) 

l.ll(l I) 

3.98(13) 

-5.89(14) 

-6.53(15) 

-1.13(16) 

5.26(17) 

5.55(18) 

-8.28(20) 

2.95(01) 

-2.67(02) 

8.51(04) 

-2.15(05) 

5.01(07) 

-4.26(09) 

-1.59(10) 

-4.13(12) 

-3.89(14) 

2.26(14) 

4.49(16) 

-2.81(17) 

-1.73(18) 

-2.19(20) 

0 2.94150 68446 542(01) 

1 -2.13014 52165 350(02) 

2 1.08648 98274 890(03) 

3 -4.39602 14734 SOO(O5) 

4 1.64329 07881 OOO(O6) 

5 -2.21706 49400 OOO(O8) 

6 - 1.33348 04400 OOO(O9) 

7 -5.81410 15000 OOO(11) 

8 -9.02339 80000 OOO(13) 

9 7.88430 80000 OOO(13) 

10 2.13926 OOOOO OOO(14) 

11 -2.52880 00000 OOO(l5) 

2.94150 68446 542(01) 

-2.13014 52165 514(02) 

1.08648 98275 510(03) 

-4.39602 13339 OOO(O5) 

1.64329 07200 OOO(O6) 

-2.21738 67000 000(08) 

-1.33351 6oooo ooo(o9) 

-5.53898 00000 OOO(11) 

-8.34500 00000 OOO(13) 

a The table illustrates to what extent convergence is improved by cutting the (a, b) interval in 
half. The coefficients are defined by Eqs. (50)-(51). 

b Number in parenthesis is negative power of 10. 
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tolerance, which we choose to be one part in 1013, and rearranged into a single 
polynomial of order yn in the variable x - .yb , 

G = f gj(x - xo)j. (51) 
j=O 

The resulting gj coefficients are also shown in Table VII. All computations up to 
this point are carried out in double precision. The gj are then stored and used in 
single precision. Note that the maximum error in approximation (51) is less than 
the sum of neglected B coefficients and is thus very nearly equal to I B,,,+l I. The 
value of g, is a poor indication of the error. 

From Table VII, one sees that reducing the size of the (a, b) interval by a factor 
of two does not reduce the number of terms in (51) by a comparable factor. Thus, 
small intervals are obviously more efficient in terms of computer time for evaluating 
G, but also more costly in terms of the number of coefficients to be stored. 
Table VIII represents one compromise between these two considerations. The 
table lists the value of m in (51) for n < 7. For example, Table VIII tells us that 
a 15th order polynomial is required to approximate W, over the interval x = 5 to 
10 to one part in IO” when n = 4. 

Miscellaneous Comments 

A useful test of the various approximations is to compute the sum 

f t,‘“W= = F, , m < 2n. 

We computed roots and weights in single precision using (41) or (51) and compared 
the sum (52) with Fm computed in double precision for x at closedly spaced inter- 
vals for all m < 2n. The disagreement was never greater than four parts in 1w3. 
Incidently, the terms with high 01 dominate the sum (52) when m is large, even 
though their W, values are small. Thus it is the per cent error not the absolute 
error in W, that is important. 

An exact quadrature formula analogous to (27) can be developed using the roots 
of J, . The advantage would be that for odd 12 one root is at t = 0 for all x. For 
example, to compute I,(x) using (27) requires the computation of four roots of 
R4 and associated weight factors whereas a formula based on the roots of J7 would 
require computation of only three roots and four weights. The disadvantage is 
that, unlike the R4 formula, the J7 roots could not also be used for the exact 
computation of an 1,(x) integral. In practice the slight advantage of the “odd n” 
formula does not seem sufficiently great to warrent storing coefficients for the 
additional polynomial approximations. 



TABLE VIII 

Degree m, of Chebyshev Polynomial Approximations to Rys 
u=(x) and W,(x) FunctionP 

n a func 091 195 5, 10 IO,15 15,20 20,25 25,30 

I 1 I( 9 14 14 12 
1 1 w 9 13 13 12 

2 1 u 8 12 14 12 
2 2 u 8 13 13 12 
2 1 w 9 13 13 11 
2 2 w 9 14 14 13 

3 1 u I 11 12 12 
3 2 u 7 11 12 12 
3 3 u 7 11 13 13 
3 1 W 8 12 12 12 
3 2 W 9 13 13 12 
3 3 W 9 14 15 14 

4 1 II 7 10 10 12 
4 2 u 6 10 10 12 
4 3 u 7 10 11 11 
4 4 l4 7 10 12 12 
4 1 W 7 11 11 11 
4 2 W 9 13 13 11 
4 3 W 9 14 14 13 
4 4 W 10 15 15 14 

5 1 u I 9 9 11 
5 2 u 7 10 10 11 
5 3 u 6 10 10 11 
5 4 u 5 9 11 11 
5 5 ” 6 10 11 12 
5 1 W 7 10 10 10 
5 2 W 8 12 12 11 
5 3 W 9 13 13 12 
5 4 W 9 14 15 14 
5 5 W 10 15 16 15 

6 1 LA 6 9 9 9 
6 2 zl 6 9 10 9 
6 3 u 6 9 10 9 
6 4 u 6 9 10 10 
6 5 I.4 6 9 10 10 
6 6 u 5 9 10 10 
6 1 W 7 10 10 9 
6 2 W 8 11 11 11 
6 3 W 9 13 13 12 
6 4 W 9 14 14 13 
6 5 w 9 14 15 14 
6 6 W 10 15 16 15 

11 
11 
11 
10 
10 
12 

12 
12 
12 
12 
11 
12 
12 
13 

11 
11 
11 
12 
12 
11 
11 
11 
12 
14 

11 
11 
11 
11 
11 
11 
10 
10 
10 
12 
13 
15 

10 
11 
11 
11 
11 
10 
10 
10 
12 
13 

11 10 
11 10 
11 11 
10 11 
11 11 
11 11 
10 10 
10 10 
11 10 
12 11 
12 11 
14 12 

x interval 

a All approximations are accurate to at least one part in lOIS. 
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V. ALTERNATIVE WEIGHT FORMULAS 

For low n, special formulas can replace some of the approximations for the 
W, and u, discussed above. Tn the case n = 1 it is simpler to compute F,(x) and 
use (3), (31) and (32). For n = 2 the weights can be computed from the roots 
according to: 

and 
w2 = ((4 - Fo) 4 + mu + k2)/(~2 - 4), (53) 

WI = F,, - W, , (54) 

which follow from (52) and (28). Similar formulas apply when n = 3, and in all 
these cases round off error is less than one decimal figure. 

We have searched for, but have not yet found, a generally useful formula for 
computing weights from roots for higher n. Equations analogous to (53), based 
on (52), become numerically unstable for higher n. Methods based on the 
Christoffel-Darboux equation have been employed for the classical orthogonal 
polynomials [3-51. That analysis requires a slight modification for R-type Rys 
polynomials because of the omission of all the J, of odd order. The appropriate 
analysis is presented below. Some important questions concerning computational 
accuracy remain to be investigated, so we presently recommend use of the W, 
fitting functions discussed above. As can be seen from Table VIII, however, a 
suitable weight formula would save considerable computer time and core storage. 

Since P is a linear combination of R, and R, it follows from (17) that t2R,(r) is a 
linear combination of R,-, , R, . and R,,, . This can be expressed as a recursion 
formula 

,%+I&+I = (1’ - Pn’) Rn - kt,Rn-1, (55) 
where 

and 

t2RnRla--1w dt, PO = 0, (56) 

Pn’ = Jo1 t”R,2w dt. (57) 

These same coefficients arise in the differentiation of R, with respect to the x 
parameter. Note that (aR,/ax) is an even polynomial of order 2n and so is a linear 
combination of Rk, k < n. 

a&(t’) 
~ = i. Rdt’) lo1 RI, ($$) w dt. ax (58) 
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Note that 

a 1 
- j” R,R,w dt = 0, 
ax 0 

SO 

0 = j- ($$-) R,w dt + 1 Rk (+) 11’ dt + j- RkR, ($) dt. (60) 

The first term in (60) vanishes when k < n, so then (60) becomes 

Jo1 Rk (2) ii* dt = .fol t2RkRnw dt, k < n. (61) 

The right side of (61) equals Ign when k = n - 1, and equals zero when k < n - 1. 
The first two terms in (60) are identical when k = n in which case the third term 
is seen to be the negative of pn’. It follows from (X9-(61) that 

awax = W) I%‘&, + t%JL - 

From (55) one obtains 

(62) 

Bn+JRn+&) UT) - R,+,(T) &ON 
= 0’ - 7’) R,(t) R,(T) + B,[&(t) R,-,(T) - R,(T) L&N (63) 

Repeated application of (63) yields a modified form of the Christoffel-Darboux 
equation applicable to Rys polynomials. 

Pn+J&+dO R,(T) - Rn+dd &WI = (t2 - 7”) t &W h(7). WI k=O 

Let t = t, , i.e., a root of R, , and let T + t, then (64) becomes 

n-1 

where 

(65) 

R,’ = aR,lat. (66) 

From (55), (65), and (21), we obtain the weight formula 

(67) We = fd.AJLdtcJ Rn’(tJl-l. 
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Since we know u, as a function of .\: we can eliminate either R,-, or R,’ from (67) 
using Eq. (70) derived below. First note that 

WJ = 0. 

Differentiate (68) with respect to x to obtain 

(68) 

Rn’(t,)(&/ax) + (iYR,/Bx) = 0. (69) 

Substitution of (62) into (69) gives the useful relationship 

R,‘(tJ(%/~x) + PnLdta) = 0. 

Note from (28) that 
ta2 = u,( 1 + L&-l, 

and 

(70) 

(71) 

2t@t$x) = &‘(I + z&y, (72) 

where U’ is the derivative with respect to x. Equations (67) (70), and (72) yield 
the alternative weight formula 

W, = -4u,(l + ~,)[R,(tJIZI~,‘. (73) 

Write R, in terms of its roots 

R,(t) = C,, n (t2 - tB2). 
B=l,?I 

Differentiate (74) with respect to t, substitute into (73) and use (71) to obtain 

Wm = -Kn [(1 + u.F/n (u, - uij2/d, B#Q 

where K,(x) is independent of OL 

Kn = [C;: n (1 + u.)]~. 
OL 

(74) 

(75) 

(76) 

Given appropriate fitting functions for u&) for a specified n, one could calculate 
U, and u,’ for a specified x. Equation (75) yields W, to within an unknown scale 
factor. Finally, one would require a fitting function for K,(x) or, alternatively, one 
could compute F,,(x) and scale the W, so as to satisfy (23). No information about 
roots or weights for other values of n are required. 
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VI. SUMMARY 

Rys polynomials, like all sequences of polynomials orthogonal with respect to 
a positive weight factor, possess useful orthogonality properties with respect to 
summation over the roots of a higher Rys polynomial. Quadrature based on these 
properties provides a practical alternative to existing computational methods for 
a wide class of molecular integrals (2). Calculation of UJX) and W,(X) replaces the 
traditional F,(x). Unfortunately no simple relationship analogous to the recursion 
relation (3) is known for the roots and weights, but satisfactory and highly accurate 
approximations have been developed. An improved formula for quadrature weight 
factors, however would be useful. 

The fitting functions described in Section IV have been incorporated into sub- 
routines that form part of programs to be submitted to the Quantum Chemistry 
Program Exchange [2]. Listings of these subroutines, DUBROOT, and any other 
program used in the present investigation can be obtained by writing to the authors. 
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